2D-3D Geometric Fusion Network using Multi-Neighbourhood Graph Convolution for RGB-D Indoor Scene Classification

09/23/2020
by   Albert Mosella-Montoro, et al.
3

Multi-modal fusion has been proved to help enhance the performance of scene classification tasks. This paper presents a 2D-3D fusion stage that combines 3D Geometric features with 2D Texture features obtained by 2D Convolutional Neural Networks. To get a robust 3D Geometric embedding, a network that uses two novel layers is proposed. The first layer, Multi-Neighbourhood Graph Convolution, aims to learn a more robust geometric descriptor of the scene combining two different neighbourhoods: one in the Euclidean space and the other in the Feature space. The second proposed layer, Nearest Voxel Pooling, improves the performance of the well-known Voxel Pooling. Experimental results, using NYU-Depth-v2 and SUN RGB-D datasets, show that the proposed method outperforms the current state-of-the-art in RGB-D indoor scene classification tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset