3D Part Assembly Generation with Instance Encoded Transformer
It is desirable to enable robots capable of automatic assembly. Structural understanding of object parts plays a crucial role in this task yet remains relatively unexplored. In this paper, we focus on the setting of furniture assembly from a complete set of part geometries, which is essentially a 6-DoF part pose estimation problem. We propose a multi-layer transformer-based framework that involves geometric and relational reasoning between parts to update the part poses iteratively. We carefully design a unique instance encoding to solve the ambiguity between geometrically-similar parts so that all parts can be distinguished. In addition to assembling from scratch, we extend our framework to a new task called in-process part assembly. Analogous to furniture maintenance, it requires robots to continue with unfinished products and assemble the remaining parts into appropriate positions. Our method achieves far more than 10 multiple metrics on the public PartNet dataset. Extensive experiments and quantitative comparisons demonstrate the effectiveness of the proposed framework.
READ FULL TEXT