A 3-DOF Robotic Platform for the Rehabilitation of Reaction Time and Balance Skills of MS Patients
We present the design, implementation, and experimental evaluation of a 3 DOF robotic platform to treat the balance disorder of the patients with MS. The robotic platform is designed to allow angular motion of the ankle based on the anthropomorphic freedom in the space. That being said, such a robot forces patients to keep their balance by changing the angular position of the platform in three directions. The difficulty level of the tasks are determined based on the data gathered from the upper and lower platforms responsible for patients' reaction time against the unexpected perturbations. The upper platform instantaneously provides pressure distribution of each foot, whereas the lower platform simultaneously shares the center of mass of the patient. In this study, the kinematic and dynamic analyses, and simulation of the 3 DOF parallel manipulator is successfully implemented. The control of the proof of concept design is carried out by means of PID control. The working principle of the upper and lower platforms are verified by set of experiments.
READ FULL TEXT