A class of twisted generalized Reed-Solomon codes

02/18/2022
āˆ™
by   Jun Zhang, et al.
āˆ™
0
āˆ™

Let š”½_q be a finite field of size q and š”½_q^* the set of non-zero elements of š”½_q. In this paper, we study a class of twisted generalized Reed-Solomon code C_ā„“(D, k, Ī·, vāƒ—)āŠ‚š”½_q^n generated by the following matrix ([ v_1 v_2 ⋯ v_n; v_1α_1 v_2α_2 ⋯ v_nα_n; ā‹® ā‹® ⋱ ā‹®; v_1α_1^ā„“-1 v_2α_2^ā„“-1 ⋯ v_nα_n^ā„“-1; v_1α_1^ā„“+1 v_2α_2^ā„“+1 ⋯ v_nα_n^ā„“+1; ā‹® ā‹® ⋱ ā‹®; v_1α_1^k-1 v_2α_2^k-1 ⋯ v_nα_n^k-1; v_1(α_1^ā„“+ηα_1^q-2) v_2(α_2^ā„“+ ηα_2^q-2) ⋯ v_n(α_n^ā„“+ηα_n^q-2) ]) where 0≤ℓ≤ k-1, the evaluation set D={α_1,α_2,⋯, α_n}āŠ†š”½_q^*, scaling vector vāƒ—=(v_1,v_2,⋯,v_n)∈ (š”½_q^*)^n and Ī·āˆˆš”½_q^*. The minimum distance and dual code of C_ā„“(D, k, Ī·, vāƒ—) will be determined. For the special case ā„“=k-1, a sufficient and necessary condition for C_k-1(D, k, Ī·, vāƒ—) to be self-dual will be given. We will also show that the code is MDS or near-MDS. Moreover, a complete classification when the code is near-MDS or MDS will be presented.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro