A Classification-Based Perspective on GAN Distributions

11/02/2017
by   Shibani Santurkar, et al.
0

A fundamental, and still largely unanswered, question in the context of Generative Adversarial Networks (GANs) is whether GANs are actually able to capture the key characteristics of the datasets they are trained on. The current approaches to examining this issue require significant human supervision, such as visual inspection of sampled images, and often offer only fairly limited scalability. In this paper, we propose new techniques that employ a classification-based perspective to evaluate synthetic GAN distributions and their capability to accurately reflect the essential properties of the training data. These techniques require only minimal human supervision and can easily be scaled and adapted to evaluate a variety of state-of-the-art GANs on large, popular datasets. Our analysis indicates that GANs have significant problems in reproducing the more distributional properties of the training dataset. In particular, when seen through the lens of classification, the diversity of GAN data is orders of magnitude less than that of the original data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset