A Combinatorial Certifying Algorithm for Linear Programming Problems with Gainfree Leontief Substitution Systems
Linear programming (LP) problems with gainfree Leontief substitution systems have been intensively studied in economics and operations research, and include the feasibility problem of a class of Horn systems, which arises in, e.g., polyhedral combinatorics and logic. This subclass of LP problems admits a strongly polynomial time algorithm, where devising such an algorithm for general LP problems is one of the major theoretical open questions in mathematical optimization and computer science. Recently, much attention has been paid to devising certifying algorithms in software engineering, since those algorithms enable one to confirm the correctness of outputs of programs with simple computations. In this paper, we provide the first combinatorial (and strongly polynomial time) certifying algorithm for LP problems with gainfree Leontief substitution systems. As a by-product, we answer affirmatively an open question whether the feasibility problem of the class of Horn systems admits a combinatorial certifying algorithm.
READ FULL TEXT