A Comparative Study of Social Network Classifiers for Predicting Churn in the Telecommunication Industry

01/18/2020
by   María Óskarsdóttir, et al.
0

Relational learning in networked data has been shown to be effective in a number of studies. Relational learners, composed of relational classifiers and collective inference methods, enable the inference of nodes in a network given the existence and strength of links to other nodes. These methods have been adapted to predict customer churn in telecommunication companies showing that incorporating them may give more accurate predictions. In this research, the performance of a variety of relational learners is compared by applying them to a number of CDR datasets originating from the telecommunication industry, with the goal to rank them as a whole and investigate the effects of relational classifiers and collective inference methods separately. Our results show that collective inference methods do not improve the performance of relational classifiers and the best performing relational classifier is the network-only link-based classifier, which builds a logistic model using link-based measures for the nodes in the network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset