A comprehensive survey on semantic facial attribute editing using generative adversarial networks

05/21/2022
by   Ahmad Nickabadi, et al.
0

Generating random photo-realistic images has experienced tremendous growth during the past few years due to the advances of the deep convolutional neural networks and generative models. Among different domains, face photos have received a great deal of attention and a large number of face generation and manipulation models have been proposed. Semantic facial attribute editing is the process of varying the values of one or more attributes of a face image while the other attributes of the image are not affected. The requested modifications are provided as an attribute vector or in the form of driving face image and the whole process is performed by the corresponding models. In this paper, we survey the recent works and advances in semantic facial attribute editing. We cover all related aspects of these models including the related definitions and concepts, architectures, loss functions, datasets, evaluation metrics, and applications. Based on their architectures, the state-of-the-art models are categorized and studied as encoder-decoder, image-to-image, and photo-guided models. The challenges and restrictions of the current state-of-the-art methods are discussed as well.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset