A Convergence indicator for Multi-Objective Optimisation Algorithms

10/29/2018
by   Thiago Santos, et al.
0

The algorithms of multi-objective optimisation had a relative growth in the last years. Thereby, it's requires some way of comparing the results of these. In this sense, performance measures play a key role. In general, it's considered some properties of these algorithms such as capacity, convergence, diversity or convergence-diversity. There are some known measures such as generational distance (GD), inverted generational distance (IGD), hypervolume (HV), Spread(Δ), Averaged Hausdorff distance (Δ_p), R2-indicator, among others. In this paper, we focuses on proposing a new indicator to measure convergence based on the traditional formula for Shannon entropy. The main features about this measure are: 1) It does not require tho know the true Pareto set and 2) Medium computational cost when compared with Hypervolume.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset