A coupled discontinuous Galerkin-Finite Volume framework for solving gas dynamics over embedded geometries

05/29/2021
by   Vincenzo Gulizzi, et al.
0

We present a computational framework for solving the equations of inviscid gas dynamics using structured grids with embedded geometries. The novelty of the proposed approach is the use of high-order discontinuous Galerkin (dG) schemes and a shock-capturing Finite Volume (FV) scheme coupled via an hp adaptive mesh refinement (hp-AMR) strategy that offers high-order accurate resolution of the embedded geometries. The hp-AMR strategy is based on a multi-level block-structured domain partition in which each level is represented by block-structured Cartesian grids and the embedded geometry is represented implicitly by a level set function. The intersection of the embedded geometry with the grids produces the implicitly-defined mesh that consists of a collection of regular rectangular cells plus a relatively small number of irregular curved elements in the vicinity of the embedded boundaries. High-order quadrature rules for implicitly-defined domains enable high-order accuracy resolution of the curved elements with a cell-merging strategy to address the small-cell problem. The hp-AMR algorithm treats the system with a second-order finite volume scheme at the finest level to dynamically track the evolution of solution discontinuities while using dG schemes at coarser levels to provide high-order accuracy in smooth regions of the flow. On the dG levels, the methodology supports different orders of basis functions on different levels. The space-discretized governing equations are then advanced explicitly in time using high-order Runge-Kutta algorithms. Numerical tests are presented for two-dimensional and three-dimensional problems involving an ideal gas. The results are compared with both analytical solutions and experimental observations and demonstrate that the framework provides high-order accuracy for smooth flows and accurately captures solution discontinuities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro