A Deep Learning based Fast Signed Distance Map Generation

05/26/2020
by   Zihao Wang, et al.
0

Signed distance map (SDM) is a common representation of surfaces in medical image analysis and machine learning. The computational complexity of SDM for 3D parametric shapes is often a bottleneck in many applications, thus limiting their interest. In this paper, we propose a learning based SDM generation neural network which is demonstrated on a tridimensional cochlea shape model parameterized by 4 shape parameters. The proposed SDM Neural Network generates a cochlea signed distance map depending on four input parameters and we show that the deep learning approach leads to a 60 fold improvement in the time of computation compared to more classical SDM generation methods. Therefore, the proposed approach achieves a good trade-off between accuracy and efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset