A Deep Learning based Pipeline for Efficient Oral Cancer Screening on Whole Slide Images
Oral cancer incidence is rapidly increasing worldwide. The most important determinant factor in cancer survival is early diagnosis. To facilitate large scale screening, we propose a fully automated end-to-end pipeline for oral cancer screening on whole slide cytology images. The pipeline consists of regression based nucleus detection, followed by per cell focus selection, and CNN based classification. We demonstrate that the pipeline provides fast and efficient cancer classification of whole slide cytology images, improving over previous results. The complete source code is made available as open source (https://github.com/MIDA-group/OralScreen).
READ FULL TEXT