A Feature Embedding Strategy for High-level CNN representations from Multiple ConvNets
Following the rapidly growing digital image usage, automatic image categorization has become preeminent research area. It has broaden and adopted many algorithms from time to time, whereby multi-feature (generally, hand-engineered features) based image characterization comes handy to improve accuracy. Recently, in machine learning, pre-trained deep convolutional neural networks (DCNNs or ConvNets) have been that the features extracted through such DCNN can improve classification accuracy. Thence, in this paper, we further investigate a feature embedding strategy to exploit cues from multiple DCNNs. We derive a generalized feature space by embedding three different DCNN bottleneck features with weights respect to their Softmax cross-entropy loss. Test outcomes on six different object classification data-sets and an action classification data-set show that regardless of variation in image statistics and tasks the proposed multi-DCNN bottleneck feature fusion is well suited to image classification tasks and an effective complement of DCNN. The comparisons to existing fusion-based image classification approaches prove that the proposed method surmounts the state-of-the-art methods and produces competitive results with fully trained DCNNs as well.
READ FULL TEXT