A Fictitious-play Finite-difference Method for Linearly Solvable Mean Field Games
A new numerical method for mean field games (MFGs) is proposed. The target MFGs are derived from optimal control problems for multidimensional systems with advection terms, which are difficult to solve numerically with existing methods. For such MFGs, linearization using the Cole-Hopf transformation and iterative computation using fictitious play are introduced. This leads to an implementation-friendly algorithm that iteratively solves explicit schemes. The convergence properties of the proposed scheme are mathematically proved by tracking the error of the variable through iterations. Numerical calculations show that the proposed method works stably for both one- and two-dimensional control problems.
READ FULL TEXT