A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation

12/10/2019
by   Pan Xu, et al.
17

Q-learning with neural network function approximation (neural Q-learning for short) is among the most prevalent deep reinforcement learning algorithms. Despite its empirical success, the non-asymptotic convergence rate of neural Q-learning remains virtually unknown. In this paper, we present a finite-time analysis of a neural Q-learning algorithm, where the data are generated from a Markov decision process and the action-value function is approximated by a deep ReLU neural network. We prove that neural Q-learning finds the optimal policy with O(1/√(T)) convergence rate if the neural function approximator is sufficiently overparameterized, where T is the number of iterations. To our best knowledge, our result is the first finite-time analysis of neural Q-learning under non-i.i.d. data assumption.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset