A Gaussian sequence approach for proving minimaxity: A Review

10/04/2018
by   Yuzo Maruyama, et al.
0

This paper reviews minimax best equivariant estimation in these invariant estimation problems: a location parameter, a scale parameter and a (Wishart) covariance matrix. We briefly review development of the best equivariant estimator as a generalized Bayes estimator relative to right invariant Haar measure in each case. Then we prove minimaxity of the best equivariant procedure by giving a least favorable prior sequence based on non-truncated Gaussian distributions. The results in this paper are all known, but we bring a fresh and somewhat unified approach by using, in contrast to most proofs in the literature, a smooth sequence of non truncated priors. This approach leads to some simplifications in the minimaxity proofs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset