A geometric optics ansatz-based plane wave method for two dimensional Helmholtz equations with variable wave numbers

12/28/2020
by   Qiya Hu, et al.
0

In this paper we develop a plane wave type method for discretization of homogeneous Helmholtz equations with variable wave numbers. In the proposed method, local basis functions (on each element) are constructed by the geometric optics ansatz such that they approximately satisfy a homogeneous Helmholtz equation without boundary condition. More precisely, each basis function is expressed as the product of an exponential plane wave function and a polynomial function, where the phase function in the exponential function approximately satisfies the eikonal equation and the polynomial factor is recursively determined by transport equations associated with the considered Helmholtz equation. We prove that the resulting plane wave spaces have high order h-approximations without wave number pollution as the standard plane wave spaces (which are available only to the case with constant wave number). We apply the proposed plane wave spaces to the discretization of nonhomogeneous Helmholtz equations with variable wave numbers and establish the corresponding error estimates of their finite element solutions. We report some numerical results to illustrate the efficiency of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset