A greedy approach for increased vehicle utilization in ridesharing networks

04/02/2023
by   Aqsa Ashraf Makhdomi, et al.
0

In recent years, ridesharing platforms have become a prominent mode of transportation for the residents of urban areas. As a fundamental problem, route recommendation for these platforms is vital for their sustenance. The works done in this direction have recommended routes with higher passenger demand. Despite the existing works, statistics have suggested that these services cause increased greenhouse emissions compared to private vehicles as they roam around in search of riders. This analysis provides finer details regarding the functionality of ridesharing systems and it reveals that in the face of their boom, they have not utilized the vehicle capacity efficiently. We propose to overcome the above limitations and recommend routes that will fetch multiple passengers simultaneously which will result in increased vehicle utilization and thereby decrease the effect of these systems on the environment. As route recommendation is NP-hard, we propose a k-hop-based sliding window approximation algorithm that reduces the search space from entire road network to a window. We further demonstrate that maximizing expected demand is submodular and greedy algorithms can be used to optimize our objective function within a window. We evaluate our proposed model on real-world datasets and experimental results demonstrate superior performance by our proposed model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset