A Grothendieck-type inequality for local maxima

03/13/2016
by   Andrea Montanari, et al.
0

A large number of problems in optimization, machine learning, signal processing can be effectively addressed by suitable semidefinite programming (SDP) relaxations. Unfortunately, generic SDP solvers hardly scale beyond instances with a few hundreds variables (in the underlying combinatorial problem). On the other hand, it has been observed empirically that an effective strategy amounts to introducing a (non-convex) rank constraint, and solving the resulting smooth optimization problem by ascent methods. This non-convex problem has --generically-- a large number of local maxima, and the reason for this success is therefore unclear. This paper provides rigorous support for this approach. For the problem of maximizing a linear functional over the elliptope, we prove that all local maxima are within a small gap from the SDP optimum. In several problems of interest, arbitrarily small relative error can be achieved by taking the rank constraint k to be of order one, independently of the problem size.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro