A High-Order-Accurate 3D Surface Integral Equation Solver for Uniaxial Anisotropic Media

03/11/2022
by   Jin Hu, et al.
0

This paper introduces a high-order accurate surface integral equation method for solving 3D electromagnetic scattering for dielectric objects with uniaxially anisotropic permittivity tensors. The N-Müller formulation is leveraged resulting in a second-kind integral formulation, and a finite-difference-based approach is used to deal with the strongly singular terms resulting from the dyadic Green's functions for uniaxially anisotropic media while maintaining the high-order accuracy of the discretization strategy. The integral operators are discretized via a Nyström-collocation approach, which represents the unknown surface densities in terms of Chebyshev polynomials on curvilinear quadrilateral surface patches. The convergence is investigated for various geometries, including a sphere, cube, a complicated NURBS geometry imported from a 3D CAD modeler software, and a nanophotonic silicon waveguide, and results are compared against a commercial finite element solver. To the best of our knowledge, this is the first demonstration of high-order accuracy for objects with uniaxially anisotropic materials using surface integral equations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro