A Hybrid High-Order method for finite elastoplastic deformations within a logarithmic strain framework

01/14/2019
by   Mickaël Abbas, et al.
0

We devise and evaluate numerically a Hybrid High-Order (HHO) method for finite plasticity within a logarithmic strain framework. The HHO method uses as discrete unknowns piecewise polynomials of order k>1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The HHO method leads to a primal formulation, supports polyhedral meshes with non-matching interfaces, is free of volumetric locking, the integration of the behavior law is performed only at cell-based quadrature nodes, and the tangent matrix in Newton's method is symmetric. Moreover, the principle of virtual work is satisfied locally with equilibrated tractions. Various two- and three-dimensional benchmarks are presented, as well as comparison against known solutions with an industrial software using conforming and mixed finite elements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset