A.I. based Embedded Speech to Text Using Deepspeech

Deepspeech was very useful for development IoT devices that need voice recognition. One of the voice recognition systems is deepspeech from Mozilla. Deepspeech is an open-source voice recognition that was using a neural network to convert speech spectrogram into a text transcript. This paper shows the implementation process of speech recognition on a low-end computational device. Development of English-language speech recognition that has many datasets become a good point for starting. The model that used results from pre-trained model that provide by each version of deepspeech, without change of the model that already released, furthermore the benefit of using raspberry pi as a media end-to-end speech recognition device become a good thing, user can change and modify of the speech recognition, and also deepspeech can be standalone device without need continuously internet connection to process speech recognition, and even this paper show the power of Tensorflow Lite can make a significant difference on inference by deepspeech rather than using Tensorflow non-Lite.This paper shows the experiment using Deepspeech version 0.1.0, 0.1.1, and 0.6.0, and there is some improvement on Deepspeech version 0.6.0, faster while processing speech-to-text on old hardware raspberry pi 3 b+.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset