A linear bound on the k-rendezvous time for primitive sets of NZ matrices

03/25/2019
by   Umer Azfar, et al.
0

A set of nonnegative matrices is called primitive if there exists a product of these matrices that is entrywise positive. Motivated by recent results relating synchronizing automata and primitive sets, we study the length of the shortest product of a primitive set having a column or a row with k positive entries (the k-RT). We prove that this value is at most linear w.r.t. the matrix size n for small k, while the problem is still open for synchronizing automata. We then report numerical results comparing our upper bound on the k-RT with heuristic approximation methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro