A Meta-learning based Distribution System Load Forecasting Model Selection Framework
This paper presents a meta-learning based, automatic distribution system load forecasting model selection framework. The framework includes the following processes: feature extraction, candidate model labeling, offline training, and online model recommendation. Using user load forecasting needs as input features, multiple meta-learners are used to rank the available load forecast models based on their forecasting accuracy. Then, a scoring-voting mechanism weights recommendations from each meta-leaner to make the final recommendations. Heterogeneous load forecasting tasks with different temporal and technical requirements at different load aggregation levels are set up to train, validate, and test the performance of the proposed framework. Simulation results demonstrate that the performance of the meta-learning based approach is satisfactory in both seen and unseen forecasting tasks.
READ FULL TEXT