A Minimax Probability Machine for Non-Decomposable Performance Measures

02/28/2021
by   Junru Luo, et al.
0

Imbalanced classification tasks are widespread in many real-world applications. For such classification tasks, in comparison with the accuracy rate, it is usually much more appropriate to use non-decomposable performance measures such as the Area Under the receiver operating characteristic Curve (AUC) and the F_β measure as the classification criterion since the label class is imbalanced. On the other hand, the minimax probability machine is a popular method for binary classification problems and aims at learning a linear classifier by maximizing the accuracy rate, which makes it unsuitable to deal with imbalanced classification tasks. The purpose of this paper is to develop a new minimax probability machine for the F_β measure, called MPMF, which can be used to deal with imbalanced classification tasks. A brief discussion is also given on how to extend the MPMF model for several other non-decomposable performance measures listed in the paper. To solve the MPMF model effectively, we derive its equivalent form which can then be solved by an alternating descent method to learn a linear classifier. Further, the kernel trick is employed to derive a nonlinear MPMF model to learn a nonlinear classifier. Several experiments on real-world benchmark datasets demonstrate the effectiveness of our new model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro