A multigrid method for PDE-constrained optimization with uncertain inputs

02/27/2023
by   Gabriele Ciaramella, et al.
0

We present a multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty. The algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size depends on the number N of samples used to discretized the probability space. We show that this reduced system can be solved with optimal O(N) complexity. We test the multigrid method on three problems: a linear-quadratic problem for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and L^1-norm penalization on the control, in which the multigrid scheme is used within a semismooth Newton iteration; a risk-adverse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits very good performances and robustness with respect to all parameters of interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset