A Multilingual Study of Compressive Cross-Language Text Summarization
Cross-Language Text Summarization (CLTS) generates summaries in a language different from the language of the source documents. Recent methods use information from both languages to generate summaries with the most informative sentences. However, these methods have performance that can vary according to languages, which can reduce the quality of summaries. In this paper, we propose a compressive framework to generate cross-language summaries. In order to analyze performance and especially stability, we tested our system and extractive baselines on a dataset available in four languages (English, French, Portuguese, and Spanish) to generate English and French summaries. An automatic evaluation showed that our method outperformed extractive state-of-art CLTS methods with better and more stable ROUGE scores for all languages.
READ FULL TEXT