A Neural Knowledge Language Model

08/01/2016
by   Sungjin Ahn, et al.
0

Current language models have a significant limitation in the ability to encode and decode factual knowledge. This is mainly because they acquire such knowledge from statistical co-occurrences although most of the knowledge words are rarely observed. In this paper, we propose a Neural Knowledge Language Model (NKLM) which combines symbolic knowledge provided by the knowledge graph with the RNN language model. By predicting whether the word to generate has an underlying fact or not, the model can generate such knowledge-related words by copying from the description of the predicted fact. In experiments, we show that the NKLM significantly improves the performance while generating a much smaller number of unknown words.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset