A Neural Network for Detailed Human Depth Estimation from a Single Image

10/03/2019
by   Sicong Tang, et al.
18

This paper presents a neural network to estimate a detailed depth map of the foreground human in a single RGB image. The result captures geometry details such as cloth wrinkles, which are important in visualization applications. To achieve this goal, we separate the depth map into a smooth base shape and a residual detail shape and design a network with two branches to regress them respectively. We design a training strategy to ensure both base and detail shapes can be faithfully learned by the corresponding network branches. Furthermore, we introduce a novel network layer to fuse a rough depth map and surface normals to further improve the final result. Quantitative comparison with fused `ground truth' captured by real depth cameras and qualitative examples on unconstrained Internet images demonstrate the strength of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset