A new time-varying model for forecasting long-memory series

12/18/2018
by   Luisa Bisaglia, et al.
0

In this work we propose a new class of long-memory models with time-varying fractional parameter. In particular, the dynamics of the long-memory coefficient, d, is specified through a stochastic recurrence equation driven by the score of the predictive likelihood, as suggested by Creal et al. (2013) and Harvey (2013). We demonstrate the validity of the proposed model by a Monte Carlo experiment and an application to two real time series.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro