A Novel Pipeline for Improving Optical Character Recognition through Post-processing Using Natural Language Processing

07/09/2023
by   Aishik Rakshit, et al.
0

Optical Character Recognition (OCR) technology finds applications in digitizing books and unstructured documents, along with applications in other domains such as mobility statistics, law enforcement, traffic, security systems, etc. The state-of-the-art methods work well with the OCR with printed text on license plates, shop names, etc. However, applications such as printed textbooks and handwritten texts have limited accuracy with existing techniques. The reason may be attributed to similar-looking characters and variations in handwritten characters. Since these issues are challenging to address with OCR technologies exclusively, we propose a post-processing approach using Natural Language Processing (NLP) tools. This work presents an end-to-end pipeline that first performs OCR on the handwritten or printed text and then improves its accuracy using NLP.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset