A Numerical Study of Landau Damping with PETSc-PIC
We present a study of the standard plasma physics test, Landau damping, using the Particle-In-Cell (PIC) algorithm. The Landau damping phenomenon consists of the damping of small oscillations in plasmas without collisions. In the PIC method, a hybrid discretization is constructed with a grid of finitely supported basis functions to represent the electric, magnetic and/or gravitational fields, and a distribution of delta functions to represent the particle field. Approximations to the dispersion relation are found to be inadequate in accurately calculating values for the electric field frequency and damping rate when parameters of the physical system, such as the plasma frequency or thermal velocity, are varied. We present a full derivation and numerical solution for the dispersion relation, and verify the PETSC-PIC numerical solutions to the Vlasov-Poisson for a large range of wave numbers and charge densities.
READ FULL TEXT