A Probabilistic Forecast-Driven Strategy for a Risk-Aware Participation in the Capacity Firming Market

05/28/2021
by   Jonathan Dumas, et al.
0

The core contribution is to propose a probabilistic forecast-driven strategy, modeled as a min-max-min robust optimization problem with recourse, and solved using a Benders-dual cutting plane algorithm in a tractable manner. The convergence is improved by building an initial set of cuts. In addition, a dynamic risk-averse parameters selection strategy based on the quantile forecasts distribution is proposed. A secondary contribution is to use a recently developed deep learning model known as normalizing flows to generate quantile forecasts of renewable generation for the robust optimization problem. This technique provides a general mechanism for defining expressive probability distributions, only requiring the specification of a base distribution and a series of bijective transformations. Overall, the robust approach improves the results over a deterministic approach with nominal point forecasts by finding a trade-off between conservative and risk-seeking policies. The case study uses the photovoltaic generation monitored on-site at the University of Liège (ULiège), Belgium.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset