A Random Number Generator for the Kolmogorov Distribution

08/29/2022
by   Paolo Onorati, et al.
0

We discuss an acceptance-rejection algorithm for the random number generation from the Kolmogorov distribution. Since the cumulative distribution function (CDF) is expressed as a series, in order to obtain the density function we need to prove that the series of the derivatives converges uniformly. We also provide a similar proof in order to show that the ratio between the target Kolmogorov density and the auxiliary density implemented is bounded. Finally we discuss a way of truncating the series expression of the density in an optimal way.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro