A Refined Approximation for Euclidean k-Means

07/15/2021
by   Fabrizio Grandoni, et al.
0

In the Euclidean k-Means problem we are given a collection of n points D in an Euclidean space and a positive integer k. Our goal is to identify a collection of k points in the same space (centers) so as to minimize the sum of the squared Euclidean distances between each point in D and the closest center. This problem is known to be APX-hard and the current best approximation ratio is a primal-dual 6.357 approximation based on a standard LP for the problem [Ahmadian et al. FOCS'17, SICOMP'20]. In this note we show how a minor modification of Ahmadian et al.'s analysis leads to a slightly improved 6.12903 approximation. As a related result, we also show that the mentioned LP has integrality gap at least 16+√(5)/15>1.2157.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset