A Rubric for Human-like Agents and NeuroAI

12/08/2022
by   Ida Momennejad, et al.
0

Researchers across cognitive, neuro-, and computer sciences increasingly reference human-like artificial intelligence and neuroAI. However, the scope and use of the terms are often inconsistent. Contributed research ranges widely from mimicking behaviour, to testing machine learning methods as neurally plausible hypotheses at the cellular or functional levels, or solving engineering problems. However, it cannot be assumed nor expected that progress on one of these three goals will automatically translate to progress in others. Here a simple rubric is proposed to clarify the scope of individual contributions, grounded in their commitments to human-like behaviour, neural plausibility, or benchmark/engineering goals. This is clarified using examples of weak and strong neuroAI and human-like agents, and discussing the generative, corroborate, and corrective ways in which the three dimensions interact with one another. The author maintains that future progress in artificial intelligence will need strong interactions across the disciplines, with iterative feedback loops and meticulous validity tests, leading to both known and yet-unknown advances that may span decades to come.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset