A Signed Subgraph Encoding Approach via Linear Optimization for Link Sign Prediction
In this paper, we consider the problem of inferring the sign of a link based on limited sign data in signed networks. Regarding this link sign prediction problem, SDGNN (Signed Directed Graph Neural Networks) provides the best prediction performance currently to the best of our knowledge. In this paper, we propose a different link sign prediction architecture call SELO (Subgraph Encoding via Linear Optimization), which obtains overall leading prediction performances compared the state-of-the-art algorithm SDGNN. The proposed model utilizes a subgraph encoding approach to learn edge embeddings for signed directed networks. In particular, a signed subgraph encoding approach is introduced to embed each subgraph into a likelihood matrix instead of the adjacency matrix through a linear optimization method. Comprehensive experiments are conducted on six real-world signed networks with AUC, F1, micro-F1, and Macro-F1 as the evaluation metrics. The experiment results show that the proposed SELO model outperforms existing baseline feature-based methods and embedding-based methods on all the six real-world networks and in all the four evaluation metrics.
READ FULL TEXT