A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the First CARLA Autonomous Driving Challenge

10/23/2020
by   Luis Alberto Rosero, et al.
0

The objective of the first CARLA autonomous driving challenge was to deploy autonomous driving systems to lead with complex traffic scenarios where all participants faced the same challenging traffic situations. According to the organizers, this competition emerges as a way to democratize and to accelerate the research and development of autonomous vehicles around the world using the CARLA simulator contributing to the development of the autonomous vehicle area. Therefore, this paper presents the architecture design for the navigation of an autonomous vehicle in a simulated urban environment that attempts to commit the least number of traffic infractions, which used as the baseline the original architecture of the platform for autonomous navigation CaRINA 2. Our agent traveled in simulated scenarios for several hours, demonstrating his capabilities, winning three out of the four tracks of the challenge, and being ranked second in the remaining track. Our architecture was made towards meeting the requirements of CARLA Autonomous Driving Challenge and has components for obstacle detection using 3D point clouds, traffic signs detection and classification which employs Convolutional Neural Networks (CNN) and depth information, risk assessment with collision detection using short-term motion prediction, decision-making with Markov Decision Process (MDP), and control using Model Predictive Control (MPC).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset