A State-of-the-art Survey of Artificial Neural Networks for Whole-slide Image Analysis:from Popular Convolutional Neural Networks to Potential Visual Transformers
In recent years, with the advancement of computer-aided diagnosis (CAD) technology and whole slide image (WSI), histopathological WSI has gradually played a crucial aspect in the diagnosis and analysis of diseases. To increase the objectivity and accuracy of pathologists' work, artificial neural network (ANN) methods have been generally needed in the segmentation, classification, and detection of histopathological WSI. In this paper, WSI analysis methods based on ANN are reviewed. Firstly, the development status of WSI and ANN methods is introduced. Secondly, we summarize the common ANN methods. Next, we discuss publicly available WSI datasets and evaluation metrics. These ANN architectures for WSI processing are divided into classical neural networks and deep neural networks (DNNs) and then analyzed. Finally, the application prospect of the analytical method in this field is discussed. The important potential method is Visual Transformers.
READ FULL TEXT