A Stein Goodness of fit Test for Exponential Random Graph Models

02/28/2021
by   Wenkai Xu, et al.
0

We propose and analyse a novel nonparametric goodness of fit testing procedure for exchangeable exponential random graph models (ERGMs) when a single network realisation is observed. The test determines how likely it is that the observation is generated from a target unnormalised ERGM density. Our test statistics are derived from a kernel Stein discrepancy, a divergence constructed via Steins method using functions in a reproducing kernel Hilbert space, combined with a discrete Stein operator for ERGMs. The test is a Monte Carlo test based on simulated networks from the target ERGM. We show theoretical properties for the testing procedure for a class of ERGMs. Simulation studies and real network applications are presented.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro