A Sub-Quadratic Exact Medoid Algorithm

05/23/2016
by   James Newling, et al.
0

We present a new algorithm, trimed, for obtaining the medoid of a set, that is the element of the set which minimises the mean distance to all other elements. The algorithm is shown to have, under certain assumptions, expected run time O(N^(3/2)) in R^d where N is the set size, making it the first sub-quadratic exact medoid algorithm for d>1. Experiments show that it performs very well on spatial network data, frequently requiring two orders of magnitude fewer distance calculations than state-of-the-art approximate algorithms. As an application, we show how trimed can be used as a component in an accelerated K-medoids algorithm, and then how it can be relaxed to obtain further computational gains with only a minor loss in cluster quality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset