A Survey on Offline Reinforcement Learning: Taxonomy, Review, and Open Problems
With the widespread adoption of deep learning, reinforcement learning (RL) has experienced a dramatic increase in popularity, scaling to previously intractable problems, such as playing complex games from pixel observations, sustaining conversations with humans, and controlling robotic agents. However, there is still a wide range of domains inaccessible to RL due to the high cost and danger of interacting with the environment. Offline RL is a paradigm that learns exclusively from static datasets of previously collected interactions, making it feasible to extract policies from large and diverse training datasets. Effective offline RL algorithms have a much wider range of applications than online RL, being particularly appealing for real-world applications such as education, healthcare, and robotics. In this work, we propose a unifying taxonomy to classify offline RL methods. Furthermore, we provide a comprehensive review of the latest algorithmic breakthroughs in the field, and a review of existing benchmarks' properties and shortcomings. Finally, we provide our perspective on open problems and propose future research directions for this rapidly growing field.
READ FULL TEXT