A Theory of Link Prediction via Relational Weisfeiler-Leman

02/04/2023
by   Xingyue Huang, et al.
0

Graph neural networks are prominent models for representation learning over graph-structured data. While the capabilities and limitations of these models are well-understood for simple graphs, our understanding remains highly incomplete in the context of knowledge graphs. The goal of this work is to provide a systematic understanding of the landscape of graph neural networks for knowledge graphs pertaining the prominent task of link prediction. Our analysis entails a unifying perspective on seemingly unrelated models, and unlocks a series of other models. The expressive power of various models is characterized via a corresponding relational Weisfeiler-Leman algorithm with different initialization regimes. This analysis is extended to provide a precise logical characterization of the class of functions captured by a class of graph neural networks. Our theoretical findings explain the benefits of some widely employed practical design choices, which are validated empirically.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset