A Unified Approach to Error Bounds for Structured Convex Optimization Problems

12/11/2015
by   Zirui Zhou, et al.
0

Error bounds, which refer to inequalities that bound the distance of vectors in a test set to a given set by a residual function, have proven to be extremely useful in analyzing the convergence rates of a host of iterative methods for solving optimization problems. In this paper, we present a new framework for establishing error bounds for a class of structured convex optimization problems, in which the objective function is the sum of a smooth convex function and a general closed proper convex function. Such a class encapsulates not only fairly general constrained minimization problems but also various regularized loss minimization formulations in machine learning, signal processing, and statistics. Using our framework, we show that a number of existing error bound results can be recovered in a unified and transparent manner. To further demonstrate the power of our framework, we apply it to a class of nuclear-norm regularized loss minimization problems and establish a new error bound for this class under a strict complementarity-type regularity condition. We then complement this result by constructing an example to show that the said error bound could fail to hold without the regularity condition. Consequently, we obtain a rather complete answer to a question raised by Tseng. We believe that our approach will find further applications in the study of error bounds for structured convex optimization problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset