A Unifying Framework for Interpolatory ℒ_2-optimal Reduced-order Modeling

09/01/2022
by   Petar Mlinarić, et al.
0

We develop a unifying framework for interpolatory ℒ_2-optimal reduced-order modeling for a wide classes of problems ranging from stationary models to parametric dynamical systems. We first show that the framework naturally covers the well-known interpolatory necessary conditions for ℋ_2-optimal model order reduction and leads to the interpolatory conditions for ℋ_2 ⊗ℒ_2-optimal model order reduction of multi-input/multi-output parametric dynamical systems. Moreover, we derive novel interpolatory optimality conditions for rational discrete least-squares minimization and for ℒ_2-optimal model order reduction of a class of parametric stationary models. We show that bitangential Hermite interpolation appears as the main tool for optimality across different domains. The theoretical results are illustrated on two numerical examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset