AANG: Automating Auxiliary Learning

05/27/2022
by   Lucio M. Dery, et al.
0

When faced with data-starved or highly complex end-tasks, it is commonplace for machine learning practitioners to introduce auxiliary objectives as supplementary learning signals. Whilst much work has been done to formulate useful auxiliary objectives, their construction is still an art which proceeds by slow and tedious hand-design. Intuitions about how and when these objectives improve end-task performance have also had limited theoretical backing. In this work, we present an approach for automatically generating a suite of auxiliary objectives. We achieve this by deconstructing existing objectives within a novel unified taxonomy, identifying connections between them, and generating new ones based on the uncovered structure. Next, we theoretically formalize widely-held intuitions about how auxiliary learning improves generalization of the end-task. This leads us to a principled and efficient algorithm for searching the space of generated objectives to find those most useful to a specified end-task. With natural language processing (NLP) as our domain of study, we empirically verify that our automated auxiliary learning pipeline leads to strong improvements over competitive baselines across continued training experiments on a pre-trained model on 5 NLP end-tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset