Accelerating Asynchronous Stochastic Gradient Descent for Neural Machine Translation

08/27/2018
by   Nikolay Bogoychev, et al.
0

In order to extract the best possible performance from asynchronous stochastic gradient descent one must increase the mini-batch size and scale the learning rate accordingly. In order to achieve further speedup we introduce a technique that delays gradient updates effectively increasing the mini-batch size. Unfortunately with the increase of mini-batch size we worsen the stale gradient problem in asynchronous stochastic gradient descent (SGD) which makes the model convergence poor. We introduce local optimizers which mitigate the stale gradient problem and together with fine tuning our momentum we are able to train a shallow machine translation system 27 baseline with negligible penalty in BLEU.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset