Accelerating Large Scale Real-Time GNN Inference using Channel Pruning
Graph Neural Networks (GNNs) are proven to be powerful models to generate node embedding for downstream applications. However, due to the high computation complexity of GNN inference, it is hard to deploy GNNs for large-scale or real-time applications. In this paper, we propose to accelerate GNN inference by pruning the dimensions in each layer with negligible accuracy loss. Our pruning framework uses a novel LASSO regression formulation for GNNs to identify feature dimensions (channels) that have high influence on the output activation. We identify two inference scenarios and design pruning schemes based on their computation and memory usage for each. To further reduce the inference complexity, we effectively store and reuse hidden features of visited nodes, which significantly reduces the number of supporting nodes needed to compute the target embedding. We evaluate the proposed method with the node classification problem on five popular datasets and a real-time spam detection application. We demonstrate that the pruned GNN models greatly reduce computation and memory usage with little accuracy loss. For full inference, the proposed method achieves an average of 3.27x speedup with only 0.002 drop in F1-Micro on GPU. For batched inference, the proposed method achieves an average of 6.67x speedup with only 0.003 drop in F1-Micro on CPU. To the best of our knowledge, we are the first to accelerate large scale real-time GNN inference through channel pruning.
READ FULL TEXT