Accelerating Path Planning for Autonomous Driving with Hardware-Assisted Memoization

05/05/2022
by   Mulong Luo, et al.
0

Path planning for autonomous driving with dynamic obstacles poses a challenge because it needs to perform a higher-dimensional search (with time-dimension) while still meeting real-time constraints. This paper proposes an algorithm-hardware co-optimization approach to accelerate path planning with high-dimensional search space. First, we reduce the time for a nearest neighbor search and collision detection by mapping nodes and obstacles to a lower-dimensional space and memoizing recent search results. Then, we propose a hardware extension for efficient memoization. The experimental results on a modern processor and a cycle-level simulator show that the hardware-assisted memoization significantly reduces the execution time of path planning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro