Accurate Sampling with Noisy Forces from Approximate Computing
In scientific computing, the acceleration of atomistic computer simulations by means of custom hardware is finding ever growing application. A major limitation, however, is that the high efficiency in terms of performance and low power consumption entails the massive usage of low-precision computing units. Here, based on the approximate computing paradigm, we present an algorithmic method to rigorously compensate for numerical inaccuracies due to low-accuracy arithmetic operations, yet still obtaining exact expectation values using a properly modified Langevin-type equation.
READ FULL TEXT